Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.

Identifieur interne : 000B44 ( Main/Exploration ); précédent : 000B43; suivant : 000B45

Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.

Auteurs : K. Igarashi [Japon] ; M F Verhagen ; M. Samejima ; M. Schülein ; K E Eriksson ; T. Nishino

Source :

RBID : pubmed:9920875

Descripteurs français

English descriptors

Abstract

Cellobiose dehydrogenases (CDH) were purified from cellulose-grown cultures of the fungi Phanerochaete chrysosporium and Humicola insolens. The pH optimum of the cellobiose-cytochrome c oxidoreductase activity of P. chrysosporium CDH was acidic, whereas that of H. insolens CDH was neutral. The absorption spectra of the two CDHs showed them to be typical hemoproteins, but there was a small difference in the visible region. Limited proteolysis between the heme and flavin domains was performed to investigate the cofactors. There was no difference in absorption spectrum between the heme domains of P. chrysosporium and H. insolens CDHs. The midpoint potentials of heme at pH 7.0 were almost identical, and no difference in pH dependence was observed over the range of pH 3-9. The pH dependence of cellobiose oxidation by the flavin domains was similar to that of the native CDHs, indicating that the difference in the pH dependence of the catalytic activity between the two CDHs is because of the flavin domains. The absorption spectrum of the flavin domain from H. insolens CDH has absorbance maxima at 343 and 426 and a broad absorption peak at 660 nm, whereas that of P. chrysosporium CDH showed a normal flavoprotein spectrum. Flavin cofactors were extracted from the flavin domains and analyzed by high-performance liquid chromatography. The flavin cofactor from H. insolens was found to be a mixture of 60% 6-hydroxy-FAD and 40% FAD, whereas that from P. chrysosporium CDH was normal FAD. After reconstitution of the deflavo-proteins it was found that flavin domains containing 6-hydroxy-FAD were clearly active but their cellobiose oxidation rates were lower than those of flavin domains containing normal FAD. Reconstitution of flavin cofactor had no effect on the optimum pH. From these results, it is concluded that the pH dependence is not because of the flavin cofactor but is because of the protein molecule.

DOI: 10.1074/jbc.274.6.3338
PubMed: 9920875


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.</title>
<author>
<name sortKey="Igarashi, K" sort="Igarashi, K" uniqKey="Igarashi K" first="K" last="Igarashi">K. Igarashi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verhagen, M F" sort="Verhagen, M F" uniqKey="Verhagen M" first="M F" last="Verhagen">M F Verhagen</name>
</author>
<author>
<name sortKey="Samejima, M" sort="Samejima, M" uniqKey="Samejima M" first="M" last="Samejima">M. Samejima</name>
</author>
<author>
<name sortKey="Schulein, M" sort="Schulein, M" uniqKey="Schulein M" first="M" last="Schülein">M. Schülein</name>
</author>
<author>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
</author>
<author>
<name sortKey="Nishino, T" sort="Nishino, T" uniqKey="Nishino T" first="T" last="Nishino">T. Nishino</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:9920875</idno>
<idno type="pmid">9920875</idno>
<idno type="doi">10.1074/jbc.274.6.3338</idno>
<idno type="wicri:Area/Main/Corpus">000B64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B64</idno>
<idno type="wicri:Area/Main/Curation">000B64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B64</idno>
<idno type="wicri:Area/Main/Exploration">000B64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.</title>
<author>
<name sortKey="Igarashi, K" sort="Igarashi, K" uniqKey="Igarashi K" first="K" last="Igarashi">K. Igarashi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biomaterials Sciences, School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biomaterials Sciences, School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verhagen, M F" sort="Verhagen, M F" uniqKey="Verhagen M" first="M F" last="Verhagen">M F Verhagen</name>
</author>
<author>
<name sortKey="Samejima, M" sort="Samejima, M" uniqKey="Samejima M" first="M" last="Samejima">M. Samejima</name>
</author>
<author>
<name sortKey="Schulein, M" sort="Schulein, M" uniqKey="Schulein M" first="M" last="Schülein">M. Schülein</name>
</author>
<author>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
</author>
<author>
<name sortKey="Nishino, T" sort="Nishino, T" uniqKey="Nishino T" first="T" last="Nishino">T. Nishino</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (isolation & purification)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Cellobiose (metabolism)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Electrophoresis, Polyacrylamide Gel (MeSH)</term>
<term>Flavin-Adenine Dinucleotide (analogs & derivatives)</term>
<term>Flavin-Adenine Dinucleotide (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Isoelectric Focusing (MeSH)</term>
<term>Mitosporic Fungi (enzymology)</term>
<term>Phanerochaete (MeSH)</term>
<term>Spectrum Analysis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spectrale (MeSH)</term>
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (isolement et purification)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Cellobiose (métabolisme)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Deuteromycota (enzymologie)</term>
<term>Flavine adénine dinucléotide (analogues et dérivés)</term>
<term>Flavine adénine dinucléotide (métabolisme)</term>
<term>Focalisation isoélectrique (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Phanerochaete (MeSH)</term>
<term>Électrophorèse sur gel de polyacrylamide (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Flavin-Adenine Dinucleotide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Cellobiose</term>
<term>Flavin-Adenine Dinucleotide</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Flavine adénine dinucléotide</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Deuteromycota</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitosporic Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Cellobiose</term>
<term>Flavine adénine dinucléotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, High Pressure Liquid</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Hydrogen-Ion Concentration</term>
<term>Hydrolysis</term>
<term>Isoelectric Focusing</term>
<term>Phanerochaete</term>
<term>Spectrum Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spectrale</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Concentration en ions d'hydrogène</term>
<term>Focalisation isoélectrique</term>
<term>Hydrolyse</term>
<term>Phanerochaete</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellobiose dehydrogenases (CDH) were purified from cellulose-grown cultures of the fungi Phanerochaete chrysosporium and Humicola insolens. The pH optimum of the cellobiose-cytochrome c oxidoreductase activity of P. chrysosporium CDH was acidic, whereas that of H. insolens CDH was neutral. The absorption spectra of the two CDHs showed them to be typical hemoproteins, but there was a small difference in the visible region. Limited proteolysis between the heme and flavin domains was performed to investigate the cofactors. There was no difference in absorption spectrum between the heme domains of P. chrysosporium and H. insolens CDHs. The midpoint potentials of heme at pH 7.0 were almost identical, and no difference in pH dependence was observed over the range of pH 3-9. The pH dependence of cellobiose oxidation by the flavin domains was similar to that of the native CDHs, indicating that the difference in the pH dependence of the catalytic activity between the two CDHs is because of the flavin domains. The absorption spectrum of the flavin domain from H. insolens CDH has absorbance maxima at 343 and 426 and a broad absorption peak at 660 nm, whereas that of P. chrysosporium CDH showed a normal flavoprotein spectrum. Flavin cofactors were extracted from the flavin domains and analyzed by high-performance liquid chromatography. The flavin cofactor from H. insolens was found to be a mixture of 60% 6-hydroxy-FAD and 40% FAD, whereas that from P. chrysosporium CDH was normal FAD. After reconstitution of the deflavo-proteins it was found that flavin domains containing 6-hydroxy-FAD were clearly active but their cellobiose oxidation rates were lower than those of flavin domains containing normal FAD. Reconstitution of flavin cofactor had no effect on the optimum pH. From these results, it is concluded that the pH dependence is not because of the flavin cofactor but is because of the protein molecule.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9920875</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>274</Volume>
<Issue>6</Issue>
<PubDate>
<Year>1999</Year>
<Month>Feb</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.</ArticleTitle>
<Pagination>
<MedlinePgn>3338-44</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cellobiose dehydrogenases (CDH) were purified from cellulose-grown cultures of the fungi Phanerochaete chrysosporium and Humicola insolens. The pH optimum of the cellobiose-cytochrome c oxidoreductase activity of P. chrysosporium CDH was acidic, whereas that of H. insolens CDH was neutral. The absorption spectra of the two CDHs showed them to be typical hemoproteins, but there was a small difference in the visible region. Limited proteolysis between the heme and flavin domains was performed to investigate the cofactors. There was no difference in absorption spectrum between the heme domains of P. chrysosporium and H. insolens CDHs. The midpoint potentials of heme at pH 7.0 were almost identical, and no difference in pH dependence was observed over the range of pH 3-9. The pH dependence of cellobiose oxidation by the flavin domains was similar to that of the native CDHs, indicating that the difference in the pH dependence of the catalytic activity between the two CDHs is because of the flavin domains. The absorption spectrum of the flavin domain from H. insolens CDH has absorbance maxima at 343 and 426 and a broad absorption peak at 660 nm, whereas that of P. chrysosporium CDH showed a normal flavoprotein spectrum. Flavin cofactors were extracted from the flavin domains and analyzed by high-performance liquid chromatography. The flavin cofactor from H. insolens was found to be a mixture of 60% 6-hydroxy-FAD and 40% FAD, whereas that from P. chrysosporium CDH was normal FAD. After reconstitution of the deflavo-proteins it was found that flavin domains containing 6-hydroxy-FAD were clearly active but their cellobiose oxidation rates were lower than those of flavin domains containing normal FAD. Reconstitution of flavin cofactor had no effect on the optimum pH. From these results, it is concluded that the pH dependence is not because of the flavin cofactor but is because of the protein molecule.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomaterials Sciences, School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verhagen</LastName>
<ForeName>M F</ForeName>
<Initials>MF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samejima</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schülein</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eriksson</LastName>
<ForeName>K E</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nishino</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>146-14-5</RegistryNumber>
<NameOfSubstance UI="D005182">Flavin-Adenine Dinucleotide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16462-44-5</RegistryNumber>
<NameOfSubstance UI="D002475">Cellobiose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52301-43-6</RegistryNumber>
<NameOfSubstance UI="C052277">6-hydroxy-FAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002475" MajorTopicYN="N">Cellobiose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005182" MajorTopicYN="N">Flavin-Adenine Dinucleotide</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007525" MajorTopicYN="N">Isoelectric Focusing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003904" MajorTopicYN="N">Mitosporic Fungi</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="N">Spectrum Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>1</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9920875</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.274.6.3338</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Eriksson, K E" sort="Eriksson, K E" uniqKey="Eriksson K" first="K E" last="Eriksson">K E Eriksson</name>
<name sortKey="Nishino, T" sort="Nishino, T" uniqKey="Nishino T" first="T" last="Nishino">T. Nishino</name>
<name sortKey="Samejima, M" sort="Samejima, M" uniqKey="Samejima M" first="M" last="Samejima">M. Samejima</name>
<name sortKey="Schulein, M" sort="Schulein, M" uniqKey="Schulein M" first="M" last="Schülein">M. Schülein</name>
<name sortKey="Verhagen, M F" sort="Verhagen, M F" uniqKey="Verhagen M" first="M F" last="Verhagen">M F Verhagen</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Igarashi, K" sort="Igarashi, K" uniqKey="Igarashi K" first="K" last="Igarashi">K. Igarashi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9920875
   |texte=   Cellobiose dehydrogenase from the fungi Phanerochaete chrysosporium and Humicola insolens. A flavohemoprotein from Humicola insolens contains 6-hydroxy-FAD as the dominant active cofactor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9920875" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020